Son zamanlarda üretken yapay zeka her yerde karşımıza çıkıyor. Gelişmiş sohbet robotlarının ve ChatGPT gibi diğer üretken yapay zeka teknolojilerinin ses getiren lansmanı, tüketicilerden iş liderlerine ve medyaya kadar herkesin dikkatini çekti.
Ancak bu sohbet araçları, yapay zekanın potansiyel etkisi söz konusu olduğunda buzdağının sadece görünen kısmı. Üretken AI daha da büyük değeri, şirketler bunu müşterileri ve çalışanları için uygulamaya başladıkça ortaya çıkacak.
AI , ürün tasarımından müşteri hizmetlerine, tedarik zinciri yönetimine ve çok daha fazlasına kadar geniş bir yelpazede kurumsal kullanım örnekleri bulunuyor.
AI zekanın potansiyelini ve riskini anlamak, şirketleri için avantaj elde etmek amacıyla bu teknolojiyi kullanmaya başlamak isteyen CIO’lar için kritik öneme sahip. McKinsey Global Institute’un raporuna göre, üretken AI küresel ekonomiye yılda 4,4 trilyon dolara kadar değer katması bekleniyor. Boston Consulting Group’un verilerine göre ise AI gelirinin yüzde 30’u, 2025 yılına kadar 60 milyar dolarlık erişilebilir pazara ulaşacak olan üretken yapay zekadan gelecek.
AI kullanmaya başlamak için beş ipucu
Verilerinizi düzenleyin
AI artık aramızda ve dünyamız üzerinde dönüşüm yaratıcı bir etkiye sahip olmaya hazırlanıyor. İşinizde üretken yapay zekadan yararlanmanın potansiyel avantajları çok fazla, bunun gerisinde kalmanın dezavantajlı ise oldukça büyük.
Ancak bu yolculuğun ilk adımı, yapay zeka/makine öğrenimi için doğru veri temellerine sahip olduğunuzdan emin olmaktan geçiyor. Kaliteli modelleri eğitebilmek için işe kendi şirketinizden gelen kaliteli ve birleşik verilerle başlamanız gerekiyor.
AI ı kendi verileriniz ile nasıl kullanabileceğinizi düşünün
Üretken AI , işletmeler için tahmine dayalı modeller geliştirmek veya içerik oluşturmayı otomatikleştirmek için kullanılabilir. Örneğin, şirketler sermaye harcamaları ve rezervlere yönelik daha bilgiye dayalı önerilerde bulunmak için finansal tahmin ve durum planlaması oluşturabilirler.
Veya üretken AI , klinisyenler için tanı, tedavi ve tedavi sonrası bakımına yönelik öneriler oluşturacak bir asistan görevi görebilir. Philips tam olarak bunu yapıyor. Sağlık teknolojisi şirketi, görüntü işleme özellikleri geliştirmek ve ses tanıma özelliğiyle klinik iş akışlarını basitleştirmek için Amazon Bedrock’u kullanacak ve bunların tümü üretken yapay zeka kullanarak gerçekleştirilecek.
Geliştirici üretkenliğinin sağlayacağı avantajları belirleyin
Üretken yapay zeka, geliştiricilerin üretkenliği için önemli avantajlar sağlayabilir. Test etme ve hata giderme gibi tekrar eden kodlama işleri için güçlü bir yardımcı olabilir ve geliştiricilerin problem çözme becerileri gerektiren daha karmaşık görevlere odaklanmalarını sağlayabilir.
CIO’ların, üretken yapay zekanın üretkenliği artırabileceği ve geliştirme süresini azaltabileceği alanları belirlemek için geliştirme ekipleriyle birlikte çalışmaları gerekiyor.
Çıktılara şüpheyle yaklaşın
Üretken AI , ancak üzerinde eğitildiği veriler kadar iyi olabilir ve bunlarda her zaman önyargı veya hata riski bulunur.
Bazen çıktı bir halüsinasyon, yani makul görünen ama aslında uydurulmuş bir cevap olabilir. Bu nedenle, geliştiricilerinizin, mühendislerinizin ve kullanıcılarınızın, yapay zeka çıktılarını kesin değil yönlendirici olarak kabul ettiklerinden emin olmanız gerekiyor.
Güvenlik, yasalar ve uyumluluk
Tüm teknolojilerde olduğu gibi, güvenlik ve gizlilik her şeyden önemli ve üretken yapay zeka, IP de dahil olmak üzere göz önünde bulundurmanız gereken yeni hususları beraberinde getiriyor.
CIO’ların, bu riskleri tanımlamak ve azaltmak amacıyla güvenlik, uyumluluk ve hukuk ekipleriyle yakın bir şekilde çalışarak üretken yapay zekanın güvenli ve sorumlu bir şekilde kullanıldığından emin olmaları gerekiyor. Ayrıca, planlarınızın kapsamını uyumluluk ve düzenlemeleri de içine alacak şekilde genişletin ve kullandığınız verilerin kime ait olduğunu dikkatlice düşünün.